Publications

Jörg Hennig: Home, Research, Publications, Teaching, CV

  1. K. G. Arun, E. Belgacem, …, J. Frauendiener, …, J. Hennig, …,
    New horizons for fundamental physics with LISA,
    Living Reviews in Relativity 25, 4 (2022)arXiv:2205.01597.
  2. J. Hennig and R. P. Macedo,
    Fully pseudospectral solution of the conformally invariant wave equation on a Kerr background,
    Class. Quantum Grav. 38, 135006 (2021)arXiv:2012.02240.
  3. E. Barausse, E. Berti, T. Hertog, …, J. Frauendiener, …, J. Hennig, …, N. Yunes,
    Prospects for fundamental physics with LISA [Invited report]
    Gen. Relativ. Gravit. 52, 81 (2020)arXiv:2001.09793.
  4. J. Hennig,
    Axis potentials for stationary n-black-hole configurations,
    Class. Quantum Grav. 37, 19LT01 (2020)arXiv:2009.03992.
  5. F. Beyer, J. Frauendiener, and J. Hennig,
    Explorations of the infinite regions of space-time,
    Int. J. Mod. Phys. D 29, 2030007 (2020)arXiv:2005.11936.
  6. J. Hennig,
    On the balance problem for two rotating and charged black holes,
    Class. Quantum Grav. 36, 235001 (2019)arXiv:1906.04847.
  7. J. Hennig,
    Smooth Gowdy-symmetric generalised Taub-NUT solutions in Einstein-Maxwell theory,
    Class. Quantum Grav. 36, 075013, (2019)arXiv:1811.10711.
  8. J. Frauendiener and J. Hennig,
    Fully pseudospectral solution of the conformally invariant wave equation near the cylinder at spacelike infinity. III: Nonspherical Schwarzschild waves and singularities at null infinity,
    Class. Quantum Grav. 35, 065015 (2018)arXiv:1709.09792.
  9. J. Hennig,
    Gowdy-symmetric vacuum and electrovacuum solutions,
    Proceedings of the 14th Marcel Grossmann Meeting on General Relativity, Rome, 2015, edited by M. Bianchi, R. T. Jantzen, and R. Ruffini (World Scientific, 2017)arXiv:1510.01755.
  10. J. Frauendiener and J. Hennig,
    Fully pseudospectral solution of the conformally invariant wave equation near the cylinder at spacelike infinity. II: Schwarzschild background,
    Class. Quantum Grav. 34, 045005 (2017)arXiv:1609.06803.
  11. J. Hennig,
    New Gowdy-symmetric vacuum and electrovacuum solutions,
    Class. Quantum Grav. 33, 135005 (2016)arXiv:1601.03106.
  12. J. Hennig,
    Gowdy-symmetric cosmological models with Cauchy horizons ruled by non-closed null generators,
    J. Math. Phys. 57, 082501 (2016)arXiv:1404.4080.
  13. J. Hennig,
    Geometric relations for rotating and charged AdS black holes,
    Class. Quantum Grav. 31, 135005 (2014)arXiv:1402.5198.
  14. F. Beyer and J. Hennig,
    An exact smooth Gowdy-symmetric generalized Taub-NUT solution,
    Class. Quantum Grav. 31, 095010 (2014)arXiv:1401.0954.
  15. J. Frauendiener and J. Hennig,
    Fully pseudospectral solution of the conformally invariant wave equation near the cylinder at spacelike infinity,
    Class. Quantum Grav. 31, 085010 (2014)arXiv:1311.6786.
  16. G. Neugebauer and J. Hennig,
    Stationary black-hole binaries: A non-existence proof,
    in General Relativity, Cosmology and Astrophysics – Perspectives 100 years after Einstein’s stay in Prague, Fundamental Theories of Physics 177 (Springer, 2014)arXiv:1302.0573.
  17. J. Hennig,
    Fully pseudospectral time evolution and its application to 1+1 dimensional physical problems,
    J. Comput. Phys. 235, 322 (2013)arXiv:1204.4220.
  18. F. Beyer and J. Hennig,
    Smooth Gowdy symmetric generalized Taub-NUT solutions,
    Class. Quantum Grav. 29, 245017 (2012)arXiv:1106.2377.
  19. J. Hennig and G. Neugebauer,
    Non-existence of stationary two-black-hole configurations,
    Proceedings of the 12th Marcel Grossmann Meeting on General Relativity, Paris, 2009, edited by T. Damour, R. T. Jantzen and R. Ruffini, (World Scientific, Singapore, 2012)arXiv:1002.1818.
  20. G. Neugebauer and J. Hennig,
    Stationary two-black-hole configurations: A non-existence proof,
    J. Geom. Phys. 62, 613 (2012)arXiv:1105.5830.
  21. J. Hennig and G. Neugebauer,
    Non-existence of stationary two-black-hole configurations: The degenerate case,
    Gen. Relativ. Gravit. 43, 3139 (2011)arXiv:1103.5248.
  22. M. Ansorg and J. Hennig,
    The interior of axisymmetric and stationary black holes: Numerical and analytical studies,
    Proceedings of the Spanish Relativity Meeting (ERE 2010), J. Phys.: Conf. Ser. 314, 012017 (2011)arXiv:1103.4635.
  23. M. Ansorg, J. Hennig and C. Cederbaum,
    Universal properties of distorted Kerr-Newman black holes,
    Gen. Relativ. Gravit. 43, 1205 (2011)arXiv:1005.3128.
  24. J. Hennig and M. Ansorg,
    Regularity of Cauchy horizons in S2xS1 Gowdy spacetimes,
    Class. Quantum Grav. 27, 065010 (2010)arXiv:0911.1000.
  25. J. Hennig, C. Cederbaum and M. Ansorg,
    A universal inequality for axisymmetric and stationary black holes with surrounding matter in the Einstein-Maxwell theory,
    Commun. Math. Phys. 293, 449 (2010)arXiv:0812.2811.
  26. G. Neugebauer and J. Hennig,
    Non-existence of stationary two-black-hole configurations,
    Gen. Relativ. Grav. 41, 2113 (2009)arXiv:0905.4179.
  27. J. Hennig and M. Ansorg,
    The inner Cauchy horizon of axisymmetric and stationary black holes with surrounding matter in Einstein-Maxwell theory: study in terms of soliton methods,
    Ann. Henri Poincaré 10, 1075 (2009)arXiv:0904.2071.
  28. M. Ansorg and J. Hennig,
    Inner Cauchy horizon of axisymmetric and stationary black holes with surrounding matter in Einstein-Maxwell theory,
    Phys. Rev. Lett. 102, 221102 (2009)arXiv:0903.5405.
  29. J. Hennig and M. Ansorg,
    A fully pseudospectral scheme for solving singular hyperbolic equations on conformally compactified space-times,
    Journal of Hyperbolic Differential Equations 6, 161 (2009)arXiv:0801.1455.
  30. M. Ansorg and J. Hennig,
    The inner Cauchy horizon of axisymmetric and stationary black holes with surrounding matter,
    Class. Quantum Grav. 25, 222001 (2008)arXiv:0810.3998.
  31. J. Hennig, M. Ansorg and C. Cederbaum,
    A universal inequality between the angular momentum and horizon area for axisymmetric and stationary black holes with surrounding matter,
    Class. Quantum Grav. 25, 162002 (2008)arXiv:0805.4320.
  32. G. Neugebauer and J. Hennig,
    Thermodynamic description of inelastic collisions in general relativity,
    Proceedings of the 11th Marcel Grossmann Meeting on General Relativity, Berlin, 2006, edited by H. Kleinert, R. T. Jantzen and R. Ruffini, (World Scientific, Singapore, 2008).
  33. J. Hennig, G. Neugebauer and M. Ansorg,
    Thermodynamic description of inelastic collisions in general relativity,
    ApJ 663, 450 (2007)gr-qc/0701131.
  34. J. Hennig and G. Neugebauer,
    Collisions of rigidly rotating disks of dust in general relativity,
    Phys. Rev. D 74, 064025 (2006)gr-qc/0606031.